Oct. 16-21, 2005 Wintergreen, VA, USA Solar and Space Physics and the vision for Space Exploration

The Sun-Earth Connection of Major Geomagnetic Storms

Jie Zhang George Mason University

Event chain from Sun to Earth

CME
Flare
Coronal Dimming
Filament Eruption

LASCO EIT MDI (SOHO)

Lack of Observations

ACE WIND Dst

Major Geomagnetic Storms

Dst <= -100

Distribution of Major Storms (1996-2004)

- 79 major events (Dst <= -100)
- 16 severe events (Dst <= -200)

By Intensity By Year

How to Find Solar Sources

- Step 1: set the 120-hr backward search window
 Step 2: find all halo CMEs in the window (AW >= 120)
- •Step 3: find out front-side halo CMEs, and locate their source region
- •Step 4: find a reduced adaptive search window using solar wind velocity jump (Zhang et al. 2003)

Three Types of Solar Drivers

- 1. S Type: driven by a single CME
- 2. M Type: driven by multiple CMEs interacting in IP
- 3. C Type: driven by CIR from Coronal Hole

S Type Driver (example)

Dst peak at 2001/04/12 00:00 UT, driven by CME at 04/10 05:30 UT

M Type Driver

- Complex Dst plot, multiple CMEs (and flares)
- Complex solar wind flow
- Consecutive CMEs from same active region

C Type Driver

- CIR (Corotation Interaction Region)
- Coronal Hole

Solar Drivers of Major Storms

70 Major Storms (excluding 9 in data gap)

15 Severe Storms (excluding 1 in data gap)

Source Regions of Major Storms

Source Region Distribution

Intra-Solar Cycle Variation of Source Regions

Before Polar Reversal

After Polar Reversal

Velocity of CME and ICME & Transit Time

ICME Velocity (km/s)

CME Transit Time from Sun to Earth (hr)

CME Transit Time from the Sun to Earth

Delay Time Betw. ICME Arrival and Dst Peak

Discussion and Conclusion

•Three Types of Solar Drivers

S Type: 56%
 M Type: 26%
 C Type: 17%

- Hemispheric Dependence on Solar Cycle
 - Western Hemisphere preferred for all phases
 - Explanation: west hemisphere connection due to spiral IP field
 - Northern Hemisphere preferred before polar field reversal
 - Southern Hemisphere preferred after polar field reversal
 - Explanation: Participation of global field in geo-effective Bz component
 - North-Eastern quadrant is un-favored for all phases in solar cycle 23
- Inner Heliospheric Observations are needed to identify the Sun-Earth-connection chain and predict the arrival time